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A Generalization of Autocorrelation and
Partial Autocorrelation Functions Useful for
Identification of ARMA(p,q) Processes
1. Introduction.

For identification of the order of moving average process or autoregressive
process the autocorrelation function Py and the partial autocorrelation function
p'k have been successfully used (see Box and Jenkins, 1976). For general mixed
ARMA(p,q) processes neither the autocorrelation function-pk nor the partial
autocorre]atfon function pé show a simple behavior which leads to a simple and
useful procedure of determining the orders p and q.

In this article we propose a new definition of generalized autocorrelation

function o(k,2) (k > 0, ¢ > 0) with the following properties.

P e(la) =g, 231,
(P2)  o(k,1) =p, ka1,
(P3) -1 < o(ks2) < 1,
(P4) For an ARMA(p,q) process
o(k,2) =0 if k> pand e > q.

The first property (P1) says that when o(k,%2)'s are arranged in a two dimensional
array, then the first row coincides with autocorrelation coefficients. Similarly
(P2) says that the first column coincides with partial autocorrelation coefficients.
p(k,2) is in fact a correlation coefficient between certain random variables

and this is reflected in (P3). (P4) is the main property of the proposed

procedure that makes it useful for the identification of ARMA(p,q) processes.



Recently several generalizations of.autocorre1ation and partial autocorrelation
functions have been proposed for the purpose of identification of ARMA(p,q)
processes. They include R- and S-arrays of Gray, Kelley, and McIntire (1978);
"GPACF" (Generalized Partial AutoCorrelation Function) discussed in Woodward
and Gray (1981) Tiao and Box (1981), and Jenkins and Alavi (1981); Corner Method
of Beguin, Gourieroux, and Monfort (1980); ESACF (Extended Sample AutoCorrelation
Function) of Tsay and Tiao (1984); SCAN (Smallest CANonical correlation) of Tsay
énd Tiao (1983). The basic ideas underlying these procedures are quite similar.

Some differences between these procedures are discussed in Tsay and Tiao (1983) and
Tsay and Tiao (1984). ESACF and SCAN of Tsay and Tiao seem to be more sophisticated
among these procedures. The major advantage of ESACF and SCAN is that they can
handle nonstationarity (unit roots) in autoregressive part directly. .The

procedure proposed below is restricted to stationary ARMA processes. On the

other hand the proposed procedure has the following attractive properties:

a) it contains autocorre]ation and partial autocorrelation coefficients as -
special cases, b) simple asymptotic theory generalizing the usual asymptotic

theory for autocorrelation and partial autocorrelation coefficients, c) quick
computation by recursive formulae generalizing the Durbin-Levinson recursive

method (Durbin (1960), Levinson (1946)). Because of these properties, the

proposed procedure seems to be a natural gengra]ization of autocorrelation

and partial autocorrelation functions. It is also an elaboration of ideas in
Section 5 of Bartlett and Diananda (1950).

In Section 2 the definition of the generalized autocoreelation function
is given and then the properties (P1) - (P4) are proved. In Section 3 the
asymptotic distribution of the sample generalized autocorrelation function is

studied. Theorem 3.2 unifies and generalizes the well known results on the



asymptotic distributions of sample autocorrelation coefficiehts e (k > q)
for MA(q) processes and the sample partial autocorrelation coefficients ré
(k > p) for AR(p) processes. In Section 4 recursive formulae for computing
o(k,2) are given. This recursive procedure is straightforward generalization
of the well known recursive procedure of obtaining partial autocorrelation
coefficients (Durbin (1960), Levinson (1946)) . In Section 5 some simulation
results are given to illustrate the behavior of the proposed procedure.
Throughout this article we mean by ARMA(p,q) process the time series x

t
generated by

1.20 BiXgq ~ jgo °3't-3°

or
B(L)Xt = OL(L)Vt s

~ where By = @ = 1, L is the lag operator, 8(L) = 1+B]L+...+Bpr, a(l) =
]+a]L+...+aqu, and v, is the white noise term with Ev% = 05. Furthermore
for regularity we assume that the roots of the polynomial equation g(L) = 0
1ie outside the unit circle and vt's are independently and identically distributed.
We will not repeat these assumptions later.
2. Definition and Some Properties of the Generalized
Autocorrelation Function.

Let o(k) denote the autocovariance function of a second-order stationary

sequence. For k > 0 Tet g(2.k) = (o(2), o(2+1),...,0(2+k-1))", and g(g,—k) =

(0(2)s0(2=1),...,0(2-k+1))". Let %(z,k) denote a kxk (nonsymmetric) Toeplitz



matrix with o(2) on the main diagonal, i.e.,

a(g) o(e+1) ... ol(2+k-1)
o(2=1) a(2) eoo o(2+k=2)
z(2,k) = . . . . (2.1)

o(2-k+1)  o(2-k+2) ... o(2)

Now we give the definition of a generalized autocorrelation function.
Definition. Let k > 0, £ > 0. A generalized autocorrelation function p(-,-

is defined as
o(k#1,2+1) = [o(kearl) = g(a+1,k) '5(2.k) " g(ke,-k) ]
=1
/Lo(0)-29(1,k) "5 (2,K) ' TTg(241,k) (2.2)
+g(1+1,K) "1 (2,K) R (0,K)E (1K) T g (241,K) ]
if |z(2.k)] # 0,
=0 if [;’(m,k)l = 0.
When k = 0 terms involving £(2,0) are taken to be zero since they are
zero-dimensional. Hence p(],2+1)=0(2+])/G(0)=p2+]o It is also easy to check
that when ¢=0 then p(k+1,1) coincides with the partial autocorrelation function

ok+1+ The properties (P1), (P2) are verified.

We now discuss the motivation for the above definition and then prove the

properties (P3) and (P4). For a set of arbitrary numbers b1,...,bk, (b051), let



k
Y=y, =.°Z box, s = b(L)xt, (2,3)
i=0
where L is the Tag operator and b(L) = 1+biL+...+b, LK. Let P = LT be
the forward shift operator and let
k.
2= Ly TPy = L biXe o gy (2.4)

i=0

Note that Z is defined in terms of the reversed process, X The time

-t
reversibility of the covariance structure of stationary sequence is essential
in considering Z. Now consider the correlation coefficient between Y and Z:

Cor(Y,Z). By the time reversibility of the process we have -

Var(Y)

Var(Z)

R (0-k+1)b
= o(0)+2h17)g(1.k)*h (15 (0,K)p q) (2.5)
k

] b.b.o(i-j),
i,j=0 1

where b = (1,b1,...,bk)‘ and R(]) = (b .,bk)'. Note that Var(Y) can be

1o
written as b(P)b(L)a(0) where P, L are now operating on the argument i of o(i).
(See the notation Ht in Bartlett and Diananda, 1950). The covariance between

Y and Z is given by

Cov(Y,Z) = p'z(a+1,k+1)h
k
= ) bib.o(atk+1~1-])
ij=0 1

b(L)%o(2+k+1),



where R = (bk’bk-1""’b0) and Q(1) = (bk,...,b]) . In general we will place

a v over a vector to denote the vector with its elements in the reversed order,
for example, g(2+k,-k) = é(2+1,k), Combining (2.5) and (2.6) we have Cor(Y,Z) =
b(L) 2o (k+2+1)/b(L)b(P)a(0).

Now we choose a particular set of.(b],g..,bk)l = E(T) defined by
%(zsk)l,t\)’(]) = -rc\)"(,Q,+~] 3k)3 (2-7)

or Bq) = -%(1sk)TIg(1+1,k) provided that g(2.k) is nonsingular. With this
choice of R(]), Cor(Y,Z) reduces to the right hand side of (2.2) and this

proves the property (P3). Note that (2.7) can also be expressed as
F(L.k)Bq) = ~glarks-k). (2.8)

It remains to show (P4). Note that (2.7) is the set of k Yule-Walker

equations for the following ARMA(k,%2) process:

Yt = B(L)xt = a(L)vt,

k

where g(L) = 1 + B1L+...+BkL ,aofL) =1+ u1L+.,.+u L%, and vt's are the white

2

noise terms. If %(z,k) is nonsingular then (2.7) gives the values of the
parameters 81,....8 . Now the smallest time index in a(L)vy is t - ¢ inayv, ,
and the largest time index in Z, , , 1 is t -2 -11n ByXt.g-1- Therefore
Y=Y.and Z = Z, ., _q are uncorrelated and p(k+1,2+1) = 0. Note that if

k > p, £ > q then an ARMA(p,q) process is a special case of ARMA(k,2) processes

having Bp+] T . T BT 0 and O] = ... Tap s 0. This proves the property.



(P4) with the provision that p(k+1,2+1) = 0 if Ig(z,k)l = 0. Now all properties
(P1)-(P4) have been verified.

We have mathematically verified all properties (P1)-(P4), but the
motivation for defining o(k+1,2+1) = O when |£(2,k)| = 0 has to be discussed
more carefully for further developments in the next section. An important
question is whether %(z,k) is nonsingular or singular when k > p, ¢ > q for
an ARMA(p,q) process. For an nxn matrix A let N(Q) denote the null space of
A and Tet v(ﬁ) be ‘the nullity of A, namely

Y

v(Q) = dim(N(Q)) = n - rank (Q).

By a nondegenerate ARMA(p,q) process we mean the process B(L)xt = a(L)vt,

where deg B(L) = p,dega(l) = q, Bp # 0, and % # 0.

Proposition 2.1. Consider a nondegenerate ARMA(p,q) process. If k > p,

2 > q, then
v(£(2,k)) = min(k-p,2-q). (2.9)

Furthermore if v = v(z(2,k)) > 0, then a basis of N(z(2.k)') is given by
n s (80,81,...,Bp,0,...,0)', o = (o,so,...,sp,o,...,O) seees By = (05...,0,

BO,...,Bp,O,...,O) » Where BO =1 and 1, has first v-1 zero elements. Similarly

a basis of N(%(x,k)) is given by Ryseee ok, with their elements in the reversed
order.
The proof of this proposition will be given in Appendix. Now consider

(2.7). It has a specific solution o = (31,;..,sp,o,...,o)'. A general

solution of (2.7) is then Q(1) = (b],...,bk)' = Q%+ 1=1S5R where CpsenesCy

A



are arbitrary constants. With these bi's consider Y in (2.3) and Z in (2.4).
We claim that Cov(Y,Z) = 0 and Var(Y) = Var(Z) is bounded away from zero, so
that Cor(Y,Z) = 0. By Proposition 2.1 we have %(z,k)ﬁi = Qi%(z,k) = 9,

Q%%(z+k,-k) =0, i=1,...,v. Using these

i=1,...,v. Also by (2.8) we have

results in (2.6) we obtain
p
Cov(Y,Z) = ) B;B;0(atk+1-i-3).
i,j=0 '

But this is zero by the same argument given above to prove the property (P4).

k
Furthermore Y = J:_o b:x, :=8(L)x +Z1 216:8(L)x¢_; L)vt+z1 _1¢;e(L)vy_s. Hence
Var(Y) 3-03 for all c],.e.,cv. This proves the above claim. In terms of

generalized inverses we have proved the following:

Proposition 2.2. For an ARMA(p,q) process the first expression of (2.2) is

zero for all (k,2) such that k > p and ¢ > q, if %(z,k)'] is taken as any
generalized inverse.

This proposition shows that it is logically consistent to define p(k+1,2+1) =
if |z(2,k)| = 0. We will see in the next section that these considerations are
essential for the discussion of sample generalized autocorrelation coefficients.

3. Asymptotic Distribution of Sample Generalized
Autocorrelation Coefficients.

In this section We_discuss distributional properties of sample generalized
autocorrelation coefficients. In practical applications sample autocovariances,
3(2), 2 =0,1,..., are computed from observed time series. These sample
autocovariances can now be substituted into (2.2). We call the resulting quantity
sample generalized autocorrelation coefficient and denote it by r(k+1,2+1). These

sample generalized autocorrelation coefficients can be arranged in a two-dimensional



table. If there is a pair (p,q) such that r(k,2)'s are close to zero for all
pairs (k,2) such that k > p and ¢ > g, then this indicates that the observed
time series comes from an ARMA(p,q) process.

Clearly we need to assess the sample variability of r(k,2)'s for judging
whether they are significantly different from zero or not. Suppose that an
observed time series Xt is a nondegenerate ARMA(p,q) process. The following
question arises: Does r(k,2) tend to be small for (k,2) where k > p and
2 > q? The difficulty here is that as a sample quantity the matrix é(z,k) is
nonsingular with probability one so that the first expression of (2.2) is
always used although the population matrix g(z,k) is singular. Using Proposition

2.1 we can show that r(k,2) tends to be small indeed.

Theorem 3.1. Let r(k+1,2+1) be the sample generalized autocorrelation coefficient
obtained from an ARMA(p,q) process of length T. Then for k > p, & > q,

r(k1,241) = 0 (T71/2),

Proof. We first note that the denominator of r(k+1,2+1) stays bounded away from zero
in probability. This can be shown as follows. As in (2.5) the denominator is

of the form R'%(O,k+])g where the first element of_g is equal to 1. Hence

|Ib[] > 1 and this implies that the denominator is bounded from below by the
smallest characteristic root of é(o,k+1). However the smallest characteristic
root of é(o,k+1) converges in probability to the smallest characteristic root

of 2(0,k+1) which is positive because £(0,k+1) is positive definite. This shows
that the denominator is bounded away ffom zero in probability. Therefore it

suffices to show that the numerator is of the order Op(T'1/2). Note that

Num = o(k+2+1) =g (1+1,k) '£(2,k) 1o (k+2,-k)

(-1)%dety (4+1,k+1)/dets (2,k).
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Consider
- + ~ ~
pr(|Num|<cT" M 23=pri7(Y ])/ﬁdet%(z+1,k+1)]5pTV/2[det§(z,k)|},

where v = min(k-p,2-q).

Let the singular value decomposition of %(2+1,k+1) and é(z,k) be

z(a+1,k+1) = Q10955
5(2.k) = R4ER>

where Q], QZ’ 31, 52 are orthogonal m§tr1ces and and f are diagonal matrices

with diagonal e]ementsxd'i‘i = 61, i=1,...,k+1, and €5 T €5 i=T,...,.k,

i
respectively. Here we specify

8y Zee28 > 0= 8y =T8T

€ 2eoe28p > 0 T

Let D = (dij) = gi §(2+],k+1)gé and E = (eij) = 5i %(z,k)gé. From the joint
asymptotic normality of sample covariances (see Sections 8.3 and 8.4 of

Anderson, 1971, for example) it follows that aij = d'j + Op(T']/Z), éi' = e1j+0p(T“]/2).

1 J
hence

]det§(2+],k+])| = Idet,Ql = op(T-*(\)H)/Z)’

- |detg(2,k)| = |det| = op(T“V/Z).
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Therefore

Tim Tim Pr(|Num| < cT" /%) = 1.

Cro o

This completes the proof. O

Note that when k > p or ¢ > q the asymptotic distribution of the numerator
of r(k+1,2+1) involves a ratio of normalrrandom variables. Thus we expect
to see a Cauchy-1ike behavior for the numerator of r(k+1,2+1).

When k = p or ¢ = q, TV2

r(k+1,2+1) has an asymptotic normal distribution
with mean zero. The following result unifies and generalizes the well known
results on autocorrelation coefficients of MA(q) processes and on partial

autocorrelation coefficients of AR(p) processes.

Theorem 3.2. Consider a nondegenerate ARMA(p,q) process: B(L)xt = u(L)vt.
Let Yt = B(L)xt = a(L)vt and let p¥ be the autocorrelation coefficients of
Yo For (k,2) such that k=p or z=q,T]/2r(k+1,z+1) are asymptotically jointly
normally distributed with mean zero. The asymptotic covariance between

1/2

T]/zr(k+1,£+1) and T/ “r(k'+1,2'+1) is given by

For the proof the argument in Section 5.6 of Anderson (1971) can be
generalized in a straightforward way:

Proof. The denominator of r(k+1,2+1) converges in probability to VAR(Y) =

VAR(Z) = oszg=0a§ for all k, & such that k = p or ¢ = q. Hence we only need

to consider the numerator.
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Let

.
-1/2,
TV By = (/T T Y2 gy
. u
=(7/T)t216(L)XtB(P)Xt-k—z-1 |

T
=(1/T)tzla(L)vt6(P)Xt_k_2_1n

The right hand side is the same.as the numerator of r(k+1,2+1) except for the
adjustment of endpoints and that é1,,..,§p(,,,o,§k) are replaced by B1,o.o,ep
(,0,...,0). hk,z corresponds to hj in formula (27), Section 5.6 of Anderson
(1971). vw1th the same argument as in Anderson (1971) hk,zls can be shown to
have an asymptotic joint normal distribution with mean zero. Their asymptotic

covariances are given by 11mTE(hk zhk' 2')° We evaluate this expected value

first. Consider

E(Ytzt-k-z—1Yszs—k'=£'~1)

=E{a (L)VeB8(P)Xy o _p1 @(LIVEBPIXg v _gv -

Note that the only nonzero contribution to the expectation comes from the term

where the same Vt—ils are taken from both a(L)Vt and a(L)vS. This term contributes
asas . E(vVE_)E(B(P)x 8(P)x )
iTi-t+s " t-1 t-k-g-1 s=k'-2'-1

to the expectation. Let Y¥ = E(Yth_i) = osig;éii denote the

"33+
autocorvariances of Yta By the time reversibility of the process the second

expectation is the same as Yz-k—z-s+k'+2' = E(B(L)xX¢_p_oB(L)Xg_j1_p2)-
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Now summing the terms involving v, .'s we obtain

t-i

E(Y,.Z Y Zs

.
tZtokeg-] opte1) = ThosVkegosikieg! -

Hence

E(h ) = (1/T) g R
koaMk',p! £ baq tosTtoK-g-stk'+g!

Yy
M ; YiY¥i-(k-k')-(g<2') °

Note that the last summation is only finite. Now using VAR(Yt) = VAR(Zt) =

Y

Y Y, Y
Yo and p; = Yi/yo we have

tin E(y by, ) /LVAR(Y)VAR(2)] - P3P (koK)= (1-2)

.i

and this gives the asymptotic covariance.

It remains to verify that the difference between h and T]/2

K,

1/2

of r(k+1,2+1) converges to zero in probability. Let ﬂ denote T times

k,2
the numerator of r(k+1,2+1). Then (except for the adjustments of end points) we

have
) 170 K
Mo T T §= 518578183 )T Z bt ekep T4
- ]/2
= Z T (By-8; )BJT kg +1- (3.2)
1,J=0
k

B T]/z(s -8 )}

i,3=0 1

-+
o1

3 skt +1-3°

x (numerator
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Now BJ > B and (1/T)a;

el il
where a; 5 = T Xp_i%qj- i kbg]-j ~ olkrarl-g-i)
in probability. Considering i =k, j = p in the first term and 1 = p, J =k
in the second term on the extreme right hand side and noting k+2+1-(k+p) =
g+1-p > q+1-p we see that indices fall in the range where the Yule-Walker
equations hold. Hence we have

- 'I .
§ Bs T @ Kigtl-j 7 0, i=1,....k,
1 ‘-
; B T .' k+£+]"’j > 09 J = 19-..,k,
in probability. Therefore the two terms on the extreme right hand side of
(3.2) converge to zero in probability and this completes the proof. |

For a nondegenerate ARMA(p,q) process yY—Cov(Yt,Yt .) can be consistently
estimated by

AY AIA . A
vi = £'%(1pt18

5(1) - g(a+1,p)'E(q,p) g (i-1,-p)
- c(1+1,p) Z( p)'” Tc(q+1,p)
+ g(a+1,p)'2(0.p) T Z(1.p)E(a.p) " TTa(a+1.p) .

[1}

(3.3)

Let r¥ = ;¥/§O, i=1,...,q9. Then as a corollary to Theorem 3.2 we have

Corollary 3.1. Suppose that x, is a nondegenerate ARMA(p,q) process. Then

t
T]/zr(p+1,q+1)/[1+2 % (r¥)2]1/2 has an asymptotic standard normal distribution.
i=1

Corollary 3.1 can be conveniently used as a test statistic for the null

hypothesis that an observed process is a nondegenerate ARMA(p,q) process.
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4. Recursive Formulae.

One advantage of our generalized autocorrelation function is that it
can be quickly computed by recursive formulae presented below. It is a
straightforward generalization of the well known recursive procedure for
partial autocorrelation coefficients (Durbin (1960), Levinson (1946)). Starting
from (q+1)—st autocorrelation coefficient pq+]=p(],q+]), the formula gives
a recursive relation for obtaining p(p+1,q+1) for successive values of p. For
g=0 it reduces to Durbin-Levinson procedure.

In this section the distinction between population quantities and sample
quantities is not important. Hence we omit; A although the recursive formulae
are used with sample quantities in practice. Also we use P.q as general running
indices rather than true ordefs of AR and MA parts.

Let g > 0 be fixed in the following discussion. We define p dimensional
vectors R(p), g(p), g(i;p), %(i;p) (i=0,...,q) as follows:

Definition:

2(q.p)'b(p) = -g(g+1,p)

z(q,p)'¢(p)
d(isp)

e(isp)

-g(q-p,p) (4.1)
z(i.p)b(p), i

0,...,9,

z(i.plelp)s 1 =0,...,q.

Using these definitions, vy. in (3.3) can be expressed as
i

vi = o(1)+b(p)'g(i-1,-p)+g(i+1,p) 'b(p)
+d@isp)'b(p), 1= 0,....q.



Then from (2.2) we have

p(p+1,9+1) = [o(p+a+1)+g(pta,-p)'b(p) /v -

Now we give the initial condition and updating formulae for R(p), g(p),

d(isp), elisp).

Initial condition.

Actually these are zero-dimensional and the condition is trivial.

Updating. Let

b (pe1) dM(i5p4)
b(p+1) = , d(i;sp+1) = . 1=0,...
N b1 (PF1) " dpe (150%1)

where bp+](p+1), dp+](i;p+1) are scalars and Q(])(p+1), g(])(1;p+1) are

p dimensional vectors. Let

¢y (p+1) e, (15pt1)

c(ptl) = e(isptl) =

5(2)(p+1) g(z)(i;p+1)

where c](p+1), e](i;p+1) are scalars and g(z)(p+1) and g(z)(i;p+1) are p

dimensional vectors. Then

o(q+p+1) + g(q+p,-p) 'b(p)
" o(a) + g(a*p,-p) "c(p) ’

bp+1 (p+.] ) =

b1 (p+1) = p(0) + byq (p¥1g ()

16

’q’

oo s>
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- o(a-p-1) + g(q-1,-p) ¢ (p)
A ) R CR R L ) el

8(2)“’”) = ¢(p) + c;(p+1)b(p),

dpeg (1'p41) = by (p#1) () + g(i-p,p) b (1) (p41),

d M (i3p41) = gisp) + bos (B+1) [g(isp) + g(i+p,-p) 1,

er(13p#1) = cq(pH)a(i) + g(i+1,p)" ¢(2)(pu1),
2B (13p41) = g(13p) + ¢, (p+1) [d(isp) + gli-T,-p)].

These formulae can be readily verified by writing (4.1) for p+1 in
éppropriate]y partitioned form. When q =0 ¢(p) equals b(p) with its elements
in the reversed order. d(0;p) reduces to -g(1,p) and e(05p) reduces to -é(],p),
Hence these need not be calculated separatg]yg However for general q > 0,
these quahtities form essential working values and have to be stored in memory

for each updating step.

5. Simulation Results.
Here we present some simulation results. An ARMA(1,1) process
(B(L) = 1-.5L, a(L) = 14L) and ARMA (3,3) process (g(L) = (1-.5L)(1+.5L2),
a(L) = (]+.5L)(1+L2)) of length 200 were generated.100 times. For each pair
(p,q) the null hypothesis Hy: o(p+1, q+1) = 0 was tested using Corollary 3.1
with asymptotic significance level .1. The entries of the following tables

show how many times the null hypothesis was rejected out of 100 trials. In

Table 1 the asymptotic expected number of (2,2) element is 10 (in comparison
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to 8 which was actually observed). In Table 2 the same holds for (4,4)
element. The pattern implied by the property (P4) of p(k,%) in Section 1 can

be clearly seen in these tables.

Table 1

xt - .5xt_] = Vi + Vt-]

number of rejections out of 100 trials

100 100 49 19 13 12 10 9

100 8 8 3 5 6 4 7

100 6 6 3 2 2 0 0

99 5 4 3 2 0 1 1

80 12 2 0 0 1 1 0

65 6 4 0 1 0 1 1

50 9 2 1 1 1 0 0

37 3 2 2 0 0 0 "0

Table 2
xt“°5Xt=1+°5Xt—2-'25Xt-3=vt+‘5Vt-]+vt—2+'5vt—3
\\ number of rejections out of 100 trials

q

P 100 100 58 12 1 9 6 8

99 87 37 8 13 11 5 7

36 10 65 7 14 2 2 0

11 54 0 8 0 0 3 1

79 3 1 2 0 1 1 0

26 41 0 4 0 0 0 0

52 3 5 1 1 1 0 1

11 34 2 4 1 0 0 0
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Appendix.

Here we give a proof of Proposition 2.1. We consider several cases.
Case 1: k = p.

For the case k = p, & = q, Anderson (1971, p.240) shows that Z(a,p)' is
nonsfngu]ar. For the case ¢ > q, Anderson's argument can be modified in a

straightforward way to show that %(z,p)' is nonsingular. The essential condition

for the proof of this case is that Bp # 0.
Case 2: k > p,2=q.

We shall show that g(q,k)' is nonsingular in this case. The essential
condition for this case will be'the asumption % # 0. We argue by induction.
First we show that %(q,p+1)' is nonsingular. Consider %(q,p+])'g =0. We
want to show that this implies £ = Q. In the partitioned form this can be

written as

o(q) g(a-1,-p)" £ (an

1]
=

g(a+1,p) z(a,p)’ ;(2)

where £ is a scalar and %(2) is a p-dimensional column vector. From the second

set of equations we have

= -g z(q,p)'°1o(q+1,p) =z s (A2)
5(2) 1% g 1801)

where Q(]) = (B],...,sp)'. Then the first equation recudes to
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p
0 =g, (.ZO o(q-1)8;).
1=

But

fo(q—i)si E([B (L)x Ix, g}

i=0
= E{[OL (L)Vt]xt_q}

2
E(Vt—_qxt—q) ocqcv.

= ag
Hence 0 = g]aqoe, This implies g1 = 0 and consequently 5(2) =Qand g = 0.
This proves that %(q,p+1)' is nonsingular.

For induction suppose that %(q,j)’ is nonsingular. We want to show that
é(q,j+1)'is nonsingular as well. The argument is the same as for the case
j = p. The differences are that p is replaced by j in (A1) and Q(]) is
replaced by (3],..°,e 3050..5)" in-(A2).

P .
This proves that ]é(q,k)'l # 0 for all k > p.

Case 3. k>p, 2>q,and k - p< 2 -q.

We shall show that v(%(k,k)') = k-p and R1- - Rk=p given in Proposition
2.1 form a basis of N(%(z,k)').

" The upper left pxp corner of %(z,k){ is %(Z,p)', As we have already

shown Q(z,p)' is nonsingular. Therefore rank (%(z,k)') > por v(%(l,k)) < k-p.
Now we want to show that v(%(l,k)') > k=p. In order to show this it suffices
to check that 12+ *Rk=p given in Proposition 2.1 belong to N(g(z,k)') because
they are clearly linearly independent and then v(%(z,k)') = dim N(%(z,k)') >
k-p. Note that in this case Rk-p ~ (0,...,0,30,...,3 ) and the element at the

p
upper right corner of %(Q,k)‘iso(z—k+1). Now k-p < ¢ - q implies g-k+1 > g+1-p.
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This implies that indices fall in the range where the Yule-Walker equations
hold. Then %(z,k)'gi, i=1,...,k-p simply reduce to the Yule-Walker
equations and therefore Q= §(£’k)lﬂi’ i=1,...,k-p. This proves that
W(F(2,k)")
N(z(2,k)").

k-p. It has been also shown that Ryse-->s form a basis of

Qk-p

Case 4. k>p, £ >q,andk - p > g - qg.

Let r q?£+k. Then r > p. The element at the upper right corner of
%(z,k)' is c(z-k+])f Now (2-k+1)+r-1=q. We see that the upper right rxr
corner bf Z(2,k)' is z(q,r)'. We have already shown that Z(q.r)' is
nonsingular. Therefore rank (%(l,k)') > rank (%(q,r)') =y or v(%(k,k)').i
2-q. Now we want to show that v(§(z,k)') > 2-q. As in the previous case
it suffices tp show that 1 EEET P belong to N(%(z,k)'). In this case
Rg-q has additional k-(v-1)-(p+1) = k-p-(2-q) zeros at the end and the last

nonzero element of p is the (£-q+p)?th (:2-q+p=v-1+p+1) element. Therefore

Ng-q

the last nonzero term in g(z,-k)'n

i -(2-g+p)+1) = +1-p).
Rg-q 18 ch(a (2-g+p)+1) ch(q 1-p). We

see that again the indices fall in the range where the Yule Walker equations
hold and we obtain Q= é(z’k)'ﬁi’ 1=1,...,2-q. This implies that v(g(ﬁ,k)') =

2-q and Dyse-- form a basis of N(%(z,k)').

,'Q,Q,-q
A1l cases have been examined and this completes the proof. ]
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